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Voronoi Cell Properties from Simulated and Real 
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Results are reported of a computer-aided study of the properties of Voronoi cells 
generated from randomly placed impenetrable uniform spheres which saturate a 
space and of Poisson points in three-dimensional space. An empirical expression 
is suggested for the volume distribution function and an expression for the 
probability of the nth nearest neighbor of a Voronoi cell nucleus forming a cell 
face. Comparison is made with the work of Meijering [Philips Res. Rep. 8:270 
(1953)], Finney [Proc. R. Soc. (London) A319:479, 495 (1970)], Kiang [Z. 
Astrophys. 64:433 (1966)], and others. Radial distributions, coordination num- 
ber, and packing density are discussed for the spheres. 

KEY WORDS: Voronoi ceil; tesselation; Poisson; random spheres; pack- 
ing density. 

I N T R O D U C T I O N  

The r a n d o m  pack ing  of th ree -d imens iona l  space has  been  s tudied  by  m a n y  
invest igators  (1-2~ using phys ica l  models  and  compute r  s imulat ion.  Com-  
pu te r  s imulat ions  of r a n d o m  assemblies  of ha rd  (or elastic) spheres have  
been  used to s tudy the stat is t ical  mechanics  of fluids. (21'26'36'37) Mode l s  for 

descr ib ing the appa ren t ly  r a n d o m  spacing of stars within galaxies (]9) as 
well as a id ing  in the unde r s t and ing  of pe rco la t ion  theory,  (3~ stat is t ical  
mechanics  of microemuls ions ,  (28'29'32) s t ructure  of glassy metals,  (27~ and  

de fo rma t ion  and  mic roc rack ing  of porous  mater ia l s  (3L33) have  been  devel-  
oped  using r a n d o m  space dividing processes.  

1 Department of Physics, University of Minnesota, Duluth, Duluth, Minnesota 55812. 
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One of the most promising models of random tesselations of space is 
the model based on Voronoi cells (also called Dirichlet cells). Voronoi cells 
are generated by starting with a distribution of points. The distribution of 
points may represent centers of volumes of physical entities used in any 
model. The location of the points can be assigned from experimental data 
or by random processes. For computer simulations, a Poisson distribution 
of points is often used. In principle the following process can be used to 
describe the process used to define the cells. Perpendicular bisecting planes 
are erected to lines connecting all possible pairs of the given points. Out of 
this rather enormous number of planes, only the portions of those planes 
that serve to define unique regions about each point are retained. The 
uniqueness of the region consists in the fact that any location within the 
region associated with each entity is closer to "its" point center than to any 
other point center. 

Meijering (24) has deduced the following mean values for the Voronoi 
polyhedra generated by Poisson points: Volume (b3), 2 number of faces 
(15.54), number of edges (40.61), number of vertices (27.07), surface area 
(5.82162), and total edge length (17.50b). In addition, Santalo (23) gives a 
deduced expected mean number of sides per face of 5.226 which has also 
been experimentally demonstrated by Rahman. (37~ The volume probability 
distribution function is not known for the Voronoi cell volumes generated 
from a set of Poisson points in space. An evaluation of the variance of the 
volume probability distribution has been given by Gilbert (25~ as 0.178 b 2 for 
a density of Poisson points of 1lb. 

In this study some additional information about the Voronoi construct 
of three-dimensional space is reported. The purpose is to describe some 
additional knowledge of the details of random space filling, i.e., probabili- 
ties of high number nearest-neighbor face formation, coordination number 
information for random equal sphere distributions, a more refined study of 
the Poisson point cell volume distribution to compare with Kiang's (22~ 
proposed volume distribution, and a determination of the saturation den- 
sity of sequential random filling of space by uniform spheres, etc. This 
information, although not necessarily immediately directly applicable to 
any particular model of material properties, has an intrinsic value in itself 
in understanding space. For instance, any suggested quantization of space 
(or phase space) might conceivably be found to bear a relationship to the 
rather extreme localization brought about by the "regions of influence" 
defined by Voronoi cells. 

2 The value of b is, of course, completely arbitrary and depends on the choice of scale of 
spacing (i.e., numerical density) of the Poisson distribution. 
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M E T H O D  A N D  RESULTS 

Spheres  

A previous computer simulation study (35) of the random sequential 
filling of space with uniform impenetrable spheres of unit diameter has 
been described. In this study a basic volume of 1000 unit volumes was used 
and this volume was filled to saturation by successively placing randomly 
chosen sphere locations. Edge corrections were made by standard replica- 
tion methods. The study resulted in an estimated saturation density of 
0.710 _+.016 sphere centers per unit volume. A further study of the com- 
pleteness of the saturation of the distributions of spheres in the data from 
this previous work was accomplished by examining (by computer methods) 
the region in a thin concentric shell about each of the existing spheres for 
the possible accommodation of any additional sphere placed tangent to the 
sphere being examined. Any existing void large enough to hold a sphere 
would necessarily involve an accommodation of a sphere located tangent to 
one of the spheres defining the walls of the void. For each of the 2079 total 
spheres in the three arrays of the original study, attempts were made at 529 
nearly equally spaced sphere center positions for possible accommodation. 
In all a total of 42 additional spheres accepting vacancies were found, 
yielding a final net saturation density of 0.707 sphere centers per unit 
volume as the best estimate of saturation density of nonoverlapping, 
randomly placed, and nontouching spheres. The central cores of the three 
simulation saturation sets (before the location of the 42 arbitrarily filled 
voids) yielded 709 sphere center locations suitable for a study of Voronoi 
cell volume distribution under nearly saturation conditions. 

Points 

In order to obtain the volume distribution for Poisson point generated 
Voronoi cells a set of 3000 such independent Voronoi cells was generated 
by the following process: A fixed volume was simulated and within this 
volume a Poisson distribution of points was laid down by a random 
number generator setting the Cartesian coordinates of the points. The 
number of points laid down in the volume in each case was programmed so 
that the distribution over the 3000 cases would correspond to a normal 
variation of points per case about a mean value of 1000. For each case, a 
point near the center of the volume was chosen by random means. The 
Voronoi cell of this chosen point was evaluated by determining all the 
nearest neighbors in order about the point and analyzing the structure of 
the cell. 
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For the spheres and for the points, a record was kept of the number of 
faces, vertices, sides per face, nearest-neighbor contribution to face form- 
ing, and cell volume. The surface area of each cell was also recorded for the 
cells generated from points. 

Results 

Tables I-III show the results of this study on points and spheres, the 
results of Finney's study on spheres, and Meijering calculated values. The 
data for the 3000 Poisson points agrees to within one standard deviaiton of 
the Meijering's means in all categories except for the mean number of faces 
per cell which falls within 1.5 standard deviations. In addition, the second 
moment of the observed volume distribution agrees (see below) well with 
the computer integrated expectation value. Hence the data should serve as 
a base for determining the empirical volume distribution. The data for the 
topological parameters in both of the sphere studies indicate significant 
departures from the values expected for Poisson point-generated parame- 
ters. These departures show a definite decrease in faces per cell (and a 
corresponding decrease in vertices per cell consistent with Euler's condition 
on edges, faces, and vertices of these types of cells) in both sphere studies, 
with the greater departure occurring for Finney's more tightly packed 
spheres. The presence of a sphere at the center of each cell, together with 
the limiting effect of the increased density of neighboring spheres, might 
plausibly cause the vertex angles of the cells to be more uniformly obtuse 
and to thus apparently create fewer faces and vertices as a consequence. 
Table II and Table III verify that the presence of a sphere at the center of a 
Voronoi cell inhibits the range of the number of faces and sides, respec- 
tively, of the cells. 

Packing Densities, The experimental density values (recorded as 
the fraction of space occupied by the spheres themselves) are given in the 
last column of Table I. Finney's value was obtained for "lightly touching" 
spheres where no uniformity of cell structure has been introduced by 
shaking the steel balls together. His value of 0.6366 represents the satura- 
tion density fraction of '"touching" randomly placed spheres whose touch- 
ing is assumed to be sufficient to afford stable support of the spheres for a 
gravitational field applied in any direction. The corresponding saturation 
density fraction of 0.370 determined in the present study represents the case 
of "nontouching" spheres whose random positions preclude the existence of 
any appreciable number of voids in the sample large enough to accommo- 
date a single additional sphere. Two speculative observations are of inter- 
est. The fact that the "nontouching" and the ""touching" density fractions 
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Table II. The Frequency of Occurrences of 
n-Faced Voronoi Polyhedra 

F a c e s  H a n s o n  H a n s o n  F i n n e y  

p e r  cell  p o i n t s  s p h e r e s  s p h e r e s  

5 1 0 . 0 %  - -  - -  

6 1 0 . 0 %  - -  - -  

7 6 0 . 2 %  - -  - -  

8 10 0 . 3 %  - -  - -  

9 45 1.5% - -  - -  

10 80 2 . 7 %  3 0 . 4 %  - -  

11 154 5.1% 15 2.1% 0.2% 
12 231 7 .7% 41 5 .8% 4 .3% 

13 279 9 .3% 84 11.8% 20 .5% 

14 319 10.6% 136 19.2% 34 .9% 

15 384  12.8% 171 24 ,1% 27 .3% 

16 380  12.7% 117 16.5% 10.7% 

17 293 9 .8% 87 12.3% 2 .1% 

18 256 8 .5% 38 5 ,4% 0 , 1 %  

19 198 6 .6% 15 2 ,1% - -  

20 138 4 . 6 %  2 0 , 3 %  - -  

21 85 2 .8% - -  - -  

22 60 2 .0% - -  - -  

23 33 1.1% - -  - -  

24  19 0 . 6 %  - -  - -  

25 16 0 . 5 %  - -  - -  

26 3 0 . 1 %  - -  - -  

27 4 0 . 1 %  - -  - -  

28 4 0 . 1 %  - -  - -  

29 - -  - -  - -  

30 1 0 . 0 %  - -  - -  

Table III. The Frequency of Occurrence of n-Sided Faces 
on Voronoi Polyhedra 

F r e q u e n c y  

S ides  3000  709 5500 

p e r  H a n s o n  H a n s o n  F i n n e y  

f a c e  p o i n t s  s p h e r e s  s p h e r e s  

3 6352  13.5% 1124 10.6% 4 . 8 %  

4 10741 22 .9% 2 3 1 0  21 .8% 18.9% 

5 11312 24 .1% 2960  27 .9% 40 .1% 

6 8893 19.0% 2 4 5 4  23 .1% 2 8 , 9 %  

7 5398 11.5% 1230 11.6% 6 .3% 

8 2738  5 .8% 399 3 .8% 1.0% 

9 1030 2 .2% 110 1,0% - -  

10 313 0 .7% 19 0 .2% - -  

11 85 0.2% 2 0.0% - -  
12 30  0 . 1 %  - -  - -  - -  

13 3 0 , 0 %  - -  - -  - -  

14 1 0 .0% - -  - -  - -  

15 . . . . .  
i 
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are within standard deviations of 1 / e  and ( 1 -  l / e ) ,  respectively, may 
suggest a plausible complementari ty of the two cases. The second observa- 
tion is that the observed saturation density of the sphere center points 
(0.707 centers per unit volume) in the present study is very close to 

1//2 of the value of the accepted maximum possible density of ~ -  centers 
per unit volume for hexagonal close packing. 

V o l u m e  Distr ibut ion.  The value of the mean volume of the cells 
obtained from the point (or sphere) data and the known value of the 
Poisson intensity (or saturation density) of distribution are related by a 
reciprocal averaging relationship. The mean volumes obtained from the 
Voronoi cell data are within a standard deviation of the values expected 
from the known densities of distributions of centers for thee finite samples 
involved. 

The data from Kiang's (22) study and from this study for the volume 
distribution of Poisson point-generated Voronoi tesselations are shown in 
Figs. 1 and 2. The error bars represent standard deviations. The two curves 
shown represent two approximation functions which may be used to 

l&flO 
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Fig. 1. The relative volume distribution data for the Voronoi tesselations generated by 
Kiang's study (Ref. 19) of 12800 Poisson points. The x-axis represents the ratio of the volumes 
of the tesselation cells to the mean volume. The bars denote standard deviations. The solid 
curve represents the Maxwell expression and the broken curve represents Kiang's suggested 
function. 
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Fig. 2. The relative volume distribution data for the Voronoi tesselations generated by this 
study of 3000 Poisson points. The x axis represents the ratio of the volumes of the tesselation 
cells to the mean volume. Intervals are 0.0972 on centers. Symbols are the same as Fig. 1. 

represent the volumes in modeling work. The function represented by the 
broken curve is suggested by Kiang: 

6 (6x)Se-6Xdx 

where the relative volume, x = volume/(mean volume), and Px.x+d~ repre- 
sents the probability of a cell's relative volume lying between x and x + dx. 

It was noticed that the surprisingly good fit with the experimental data 
was achieved by using a Maxwell speed distribution function to represent 
the data. N o  a priori reason can be cited for expecting a match between the 
speed distribution function of Maxwell and the volumes distribution of 
Voronoi tesselations other than a vague similarity in the nature of the 
randomness of the vectors describing velocities in Maxwell's case and 
normals to the faces of the cells of the tesselations in the Voronoi case. The 
Maxwellian expression for the probability of the relative speed of an atom 
lying between x and x + dx is given by 

Pxx+dx - 32 e-(4/'~ dx 
, ,i1.2 
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This expression is derivable from the geometric properties of three- 
dimensional space alone (34) and is represented by the full curve in the 
figures. Boltzmann's constant k and the absolute temperature T usually 
associated with the Maxwellian distribution function are related to ther- 
modynamical reasoning and play no role in the above equation. In any 
event, the expression fits the data quite well if one simply allows x to 
represent the relative volume of the cells. The relationship becomes then 

where n is the expected number of observations in any interval of width 
(dv/~) and N is the total number of cases observed. The Maxwell curve is 
shown by the full line in Figs. 1 and 2. 

It appears from Kiang's data in Fig. 1 that both curves are only 
approximate representations of the empirical distribution function for 
Voronoi tessellations. Near the peak of the curves and at smaller volumes, 
the Maxwell expression fits Kiang's data best while Kiang's expression 
gives a better fit in the range of relative volumes from 1.0 to 2.0. In the case 
of the present study shown in Fig. 2, however, Kiang's expression is clearly 
superior. A chi-square distribution test ranks the Kiang function fit near 
the 80 percentile (i.e., 80% of data would exhibit a better fit). The lack of 
positive fit of the Maxwell expression, however, became apparent in the 
study when approximately 3000 cases were analyzed. Either function might 
be useful in models that depend on the properties of Voronoi tesselations. 

An evaluation of the second moments of the two above functions as 
well as the moments of the data and of the expected second moment of the 
point generated cells was made. The second moment of both functions can 
be calculated to any desired degree of precision. A value of 1.178097 . . .  
for Maxwell and a value of 1.166667 for Kiang is obtained. Gilbert (25~ gives 
1.178 as the second moment value obtained by numerical integration of the 
expectations implied in the Voronoi construct. Gilbert's numerical integra- 
tion value and the precisely known value of the second moment for the 
Maxwellian expression are so nearly the same that a repetition of Gilbert's 
method was performed to gain greater numerical precision. The results of 
this computer integration gave a value of the second moment of 1.178817. 
Hence, this confirms that the Maxwell function definitely is not a true 
representation of Voronoi cell volume distributions. Nevertheless, it may 
serve as a useful tool in applied modeling. The data for relatively large 
volumes are not sufficient to distinguish which curve is better. Estimates of 
possible systematic errors inherent in the "graininess" contributed by the 
pseudorandom number generator used and the finiteness of the computer 
do not seem large enough to account for the discrepancy between the data 
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and either of the suggested expressions. The experimental value of the 
second moment calculated for Kiang's data is 1.168 and for the Poisson 
points of this study the value obtained is 1.179. 

Figure 3 shows the data for the computer-simulated filling of space by 
equal spheres together with the Maxwell and Kiang curves. Both expres- 
sions have been modified to include a "smallest volume," Vo, so that x 
becomes 

t~ - -  1) 0 
X - -  - -  

- - /30  

The value of v 0 which best fits the data in a "least-squares" sense was 
v o = 0.694. Figure 4 shows corresponding data for Finney's 5500 actual 
spheres whose measured center positions were used as Voronoi tesselation 
centers. A "least-squares" determined value of v o = 0.900 was used in 
representing the Finney data. N o  significance is readily apparent for these 
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computer simulated nonoverlapping and nontouching spheres whose random locations were 
serially chosen by a random generator until a replicated region was saturated. The x axis 
represents the ratio ( v  - v o ) / ( ~  - Vo), where  ~ is the mean volume of the tesselation cells and 
v 0 is an arbitrary constant chosen to give the best fit. The bars denote standard deviations. 
The solid curve represents a modified Maxwell expression and the broken  curve  represents 
Kiang's modified function. 
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Fig. 4, The relative volume distribution data for the Voronoi tesselations generated by 
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vo), where g is the mean volume of the tesselation cells and v 0 is an arbitrary constant chosen 
to give the best fit. The bars denote standard deviations. The solid curve represents the 
modified Maxwell expression and the broken curve represents Kiang's modified function. 

values of v0. The resulting volume distribution data are remarkably well 
represented by the Maxwell curve. As expected, both Fig. 3 and Fig. 4 
show narrower peaks than Fig. 1 and Fig. 2 because the "saturation" 
effects of the volume occupied by the spheres themselves. There is less 
space to be randomly divided among the cells. 

Radial Distribution of Spheres. Figure 5 shows a plot of the radial 
distribution of the centers of the spheres in the saturation of space simula- 
tion study. A splitting in the second peak is observed in other stud- 
ies(2,5,1oj l) of touching spheres. A suggestion of a split in the second peak 
at a radius of 2.0 diameters is apparent in Fig. 5 even though the spheres in 
this case are not touching. 

Coordination Number. Figure 6 shows a plot of the local average 
density around the cells in the saturation of space by spheres study. An 
insert in the figure shows the details of the slope of the local numerical 
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density of spheres centers. It is readily seen that the slope changes at n = 8. 
Hence, the first eight nearest neighbors bear a special relation to any sphere 
in a "saturated" configuration. This information agrees with the observa- 
tion of Finney (H) and may be of value in "hard sphere" models of the 
transition region between the liquid and gas phases of matter. 

Nearest-Neighbor U s e .  Figure 7 shows the data on the probability 
of use of the nearest neighbors of a point or sphere center in forming a face 
of a Voronoi cell. Standard deviation bars are displayed for the data. The 
solid curve is a plot of the arbitrarily selected function 

P,, = e x p [ -  K ( n  - 1) ' /2 ] 

where Pn represents the probability of use of the nth neighbor. No a priori 
reasoning suggest this functional form but it does seem to represent the 
data for Poisson points as centers of Voronoi cells quite well when K is 
selected so that the integrated sum of the expression for all n agrees with 
the Meijering value of 15.54 for the average number of faces. The value of 
K obtained is 0.01471. Chi-square tests of the fit for the 3000 cases of 
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Poisson points show a definite lack of fit for this expression, especially in 
the range of the second to the seventh nearest neighbor. Nevertheless, the 
expression may be of value for modeling purposes. Out of the (3000)(15.54) 
faces observed in the point study, two faces were found at the 95th and 
98th nearest neighbor. Note of interest: The expression for Pn taken 
together with the general dependence of the location of the nth neighbor as 
being determined by the cube of the neighbor's radial coordinate estab- 
lishes a "sphere of influence" about each nucleus of a Voronoi cell that 
is attenuated as exp(-constr9/2). That is, the probability of inclusion 
("inside" a face along line of centers) decreases in an especially rapid 
fashion. 
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